Laplacian feature detection and feature alignment for multimodal ophthalmic image registration using phase correlation and Hessian affine feature space
نویسندگان
چکیده
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملAffine Registration with Feature Space Mutual Information
This paper introduces two important issues of image registration. At first we want to recall the very general definition of mutual information that allows the choice of various feature spaces to perform image registration. Second we discuss the problem of finding the global maximum in an arbitrary feature space. We used a very general parallel, distributed memory, genetic optimization which tur...
متن کاملImage registration in high-dimensional feature space
Image registration is a difficult task especially when spurrious image intensity differences and spatial variations between the two images are present. To robustify image registration algorithms to such spurrious variations it can be useful to employ an image registration matching criteria on higher dimensional feature spaces. This paper will present an overview of our recent work on image regi...
متن کاملFeature-Based Retinal Image Registration Using D-Saddle Feature
Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects ...
متن کاملA robust feature-based registration method of multimodal image using phase congruency and coherent point drift
This paper presents a new feature matching algorithm for nonrigid multimodal image registration. The proposed algorithm first constructs phase congruency representations (PCR) of images to be registered. Then scale invariant feature transform (SIFT) method is applied to capture significant feature points from PCR. Subsequently, the putative matching is obtained by the nearest neighbour matching...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2020
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2020.107733